Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti–Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O3) Using Soave–Redlich–Kwong (Srk) and Pang–Robinson (Pr) Equations

نویسندگان

  • Kathy A. Kramarczuk
  • Brian W. Skelton
چکیده

ISSN 1860-3122 300 Anti–cancer Nano drugs separation is investigated as one of the most important steps of a process. An important technique of anti–cancer Nano drugs separation is by means of supercritical fluids. Fluids such as Ozone (O3) show an increase in their solubility when they enter the zone of supercritical condition. The application of supercritical fluids is preferred in the separation of anti–cancer Nano drugs whose sensitivity to temperature and pressure are high–Nano materials such as drugs, foods, proteins and so on. The molecular shape of these Nano compounds would be transformed when these parameters change. In the current editorial, firstly, a new third equation of state has been presented with the combination of Soave’s defending statement and Redlich–Kwong’s attracting statement, then and according to the six well–defined scales, the solubility of anti–cancer Nano drugs in the supercritical fluid of Ozone (O3) has been studied with the aid of new equations and also its results have been compared with the results of Soave–Redlich–Kwong (SRK) and Pang–Robinson (PR) equations. In addition, the error of solubility for 196 experimental points in the new equation of state, Soave–Redlich–Kwong (SRK) and Pang–Robinson (PR) equations are 7.352%, 11.728% and 9.294%, respectively. It indicates that the new equation possesses an acceptable and reasonable accuracy and precision in the prediction of solubility. Furthermore, to do this editorial, the Nitrogen, Oxygen, Phosphorus and Sulphur heterocyclic anti–cancer Nano drugs were chosen and classified into four isolated groups and then the experimental spectra of the Hydrogen and Carbon nucleus were prepared [1–20]. Since the main goal of this editorial is developing a relationship between theoretical and experimental chemical shifts of Carbon and Hydrogen nucleus in N–, O–, P– and S– heterocyclic anti– cancer Nano drugs, the theoretical and experimental data were compared and analyzed together [21–31]. Finally, after studying the four groups, a formula was obtained for each group to join experimental to theoretical variables together. For testing the reliability of these formulas several molecules were chosen and the experimental spectra were gathered using 1HNMR, 13CNMR, 31PNMR, Attenuated Total Reflectance Fourier Transform Infrared (ATR–FTIR), FT–Raman, HR Mass and UV–Vis spectroscopies and then the formula was applied and the percentage of error was taken into the account. References

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement and Modeling of Acridine Solubility in Supercritical Carbon Dioxide

Supercritical carbon dioxide has gained increasing attention in food and pharmaceutical processing owing to the fact that it is environmentally inexpensive, not flammable, essentially non-toxic, and it has a convenient critical point. Also, it has been attracting much attention in many fields, such as extraction of sensitive materials and pharmaceutical processing and polymerization processes. ...

متن کامل

Fuel Droplet Evaporation in a Supercritical Environment

This paper reports a numerical investigation of the transcritical droplet vaporization phenomena. The simulation is based on the time-dependent conservation equations for liquid and gas phases, pressure-dependent variable thermophysical properties, and a detailed treatment of liquid-vapor phase equilibrium at the droplet surface. The numerical solution of the two-phase equations employs an arbi...

متن کامل

Solubility Prediction of High Molecular Weight n-Paraffins in Supercritical Carbon Dioxide

Solubility of high molecular weight n-paraffins in supercritical carbon dioxide has been a matter of interest to many researchers. However, not sufficient solubility experimental data are available although the methods by which the experimental data are obtained have many varieties. Utilizing cubic equations of state is an effective method for solubility prediction of n-paraffins in supercr...

متن کامل

Multicomponent Distillation Modeling of An Essential Oil by the SRK and PSRK State Equations

The equation of state Soave-Redlich-Kwong (SRK) and its modification (predictive SRK or PSRK) are applied to simulate multicomponet distillation, which separate main component of spearmint essential oil. The simulation model is based on bubble point method, and the Wang-Henke algorithm. Spearmint essential oil is considered in the study and the original experimental data were obtained f...

متن کامل

New Method for Calculation Mixing Rule and Modification Semi-empirical Models for Solubility Modeling in Supercritical Solvent

The critical properties of a solute are required for modeling of the solubility by the equation of state. For many compounds, the critical properties are not available. So, group contribution method is utilized as a common method to estimate these properties. But, it leads to the consecutive errors in calculations of the solubility modeling. In this study, Soave-Redlish-Kowang (SRK) and Peng-Ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016